uniformly graded soil - definizione. Che cos'è uniformly graded soil
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è uniformly graded soil - definizione

SEQUENCE FUNCTION
Uniformly cauchy; Uniformly Cauchy

Graded ring         
GRADED MODULE, WHERE THE GRADING HAS THE STRUCTURE OF A MONOID, IN WHICH RING MULTIPLICATION RESPECTS THE GRADING
Graded commutative ring; Homogeneous ideal; Graded module; Homogeneous element; Graded abelian group; Graded algebra; Graded monoid
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups R_i such that R_i R_j \subseteq R_{i+j}. The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid.
Soil Stradivarius         
STRADIVARIUS VIOLIN
Soil Strad; Soil stradivarius
The Soil Stradivarius (pronounced ) of 1714 is an antique violin made by Italian luthier Antonio Stradivari of Cremona (1644–1737). A product of Stradivari’s golden period, it is considered one of his finest.
Uniformly convex space         
REFLEXIVE BANACH SPACE SUCH THAT THE CENTER OF A LINE SEGMENT INSIDE THE UNIT BALL MUST LIE DEEP INSIDE THE UNIT BALL UNLESS THE SEGMENT IS SHORT
Uniformly convex Banach space; Uniformly convex banach space; Uniform Convexity; Uniform convexity; Uniformly convex
In mathematics, uniformly convex spaces (or uniformly rotund spaces) are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A.

Wikipedia

Uniformly Cauchy sequence

In mathematics, a sequence of functions { f n } {\displaystyle \{f_{n}\}} from a set S to a metric space M is said to be uniformly Cauchy if:

  • For all ε > 0 {\displaystyle \varepsilon >0} , there exists N > 0 {\displaystyle N>0} such that for all x S {\displaystyle x\in S} : d ( f n ( x ) , f m ( x ) ) < ε {\displaystyle d(f_{n}(x),f_{m}(x))<\varepsilon } whenever m , n > N {\displaystyle m,n>N} .

Another way of saying this is that d u ( f n , f m ) 0 {\displaystyle d_{u}(f_{n},f_{m})\to 0} as m , n {\displaystyle m,n\to \infty } , where the uniform distance d u {\displaystyle d_{u}} between two functions is defined by

d u ( f , g ) := sup x S d ( f ( x ) , g ( x ) ) . {\displaystyle d_{u}(f,g):=\sup _{x\in S}d(f(x),g(x)).}